
Profiling benchmarks to characterize the failures for approximate memory

Anish Tondwalkar Haina Li
University of Virginia

{tondwalkar,hainali}@virginia.edu

1. Introduction

Traditional techniques for providing memory reliability have a one-
size-fits-all approach to error correction, which is inefficient and
costly because all memory are treated the same way. Recent research
has found that not all data are equal, and that applications, depending
on the nature of their computation, can have a high tolerance for data
errors [5]. For example, Li and Yeung’s work [3] on application-level
correctness investigated definitions of program correctness based on
the application user’s point of view instead of that of the system or
architecture. They found that all the programs they studied exhibit
some fault resilience when you only measure application correctness
based on the user-perceived output. Such new approaches aims to
trade DRAM reliability for power or performance, providing memory
protection only for error-sensitive data.

To help decide with types of data are more fault-resistant than
others, this project will focus on characterizing memory failures
in both precise and approximate applications by mapping memory
access patterns and locations of failure. Granular knowledge of
memory access patterns will help reveal how data corruption affects
data types and and data structures.

2. Problem Statement

Current works have shown that it is possible to trade off DRAM
reliability for power or performance [8, 4, 5]. Some applications
can tolerate failures and consequently, can leverage approximate
memory to improve system power and performance [5, 3]. In this
work, we will examine both precise and approximate applications
and characterize the behavior of memory failures on different data
types, data structures, locations, and memory access patterns.

We characterize the memory soft-error recoverability of regions of
applications so that it might be moved onto less reliable but cheaper
and more efficient banks of memory. We use a fault injection and
program monitoring framework to inject random single- and multi-
bit flip errors, while we log the response of the program — Did it
execute correctly and without crashing? — and the region in which
we injected the fault.

3. Related work

Characterizing Application Memory Error Vulnerability
The work closest to ours is [5], in which the authors perform a pre-
liminary profiling of application memory error vulnerability. This is
based on the work of [3] which showed that application-level correct-
ness was useful property. Luo et al. [5] find exploitable differences in
memory error recoverability (both hard and soft) between heap, stack
and private memory. We intend to focus on soft errors and extend
this to dependence on memory access patterns, data structures, and
data types.
Saving DRAM Refresh-power using Hetrogenous RAM
Several papers [4, 8] have noted that differences in memory error
recoverability in different parts of applications allow one to partition
data in a way that critical data is stored on more reliable memory,

while much can be offloaded to less reliable DRAM. These rely on
programmer annotations, typically obtained by manually profiling,
to note which parts of the program have greater error recoverabil-
ity. They significantly increase energy efficiency at low cost to
application-level reliability, but at significant cost in programmer
time.
Software Recovery of Hardware Faults
We primarily discuss data reliability from the software’s point of
view. We can do this, because significant research [9, 2, 10] has been
successful in handing off hardware soft error recovery to the soft-
ware, allowing it to control the recovery process. Methods that make
software more resistant to memory failure, and therefore improves its
soft error recoverability have been very successful [10], which bodes
well for our work. de Kruijf et al [2] argues that this new approach
to memory fault simplifies hardware design and helps technology
scaling, achieving a 20% energy efficiency improvement with mini-
mal changes to the code and hardware design in their architectural
framework for software recovery of hardware faults. This tries to
solve a similar problem to ours, using hardware-software-co-design
to increase efficiency, but this still work relies on explicit programmer
annotation.

4. Methodology

We will first locate regions of memory failure by examining appli-
cation memory access patterns and the location of memory failure.
Starting with the approach used by Luo et al [5], we will define an
address A’s unsafe duration as the sum of time across an application’s
execution time between each read and previous memory reference
to A. Similarly, An address A’s safe duration is the sum of an ap-
plication’s execution time between each write and previous memory
reference to A. The safe ratio is the safe duration/(safe duration +
unsafe duration).

A safe ratio close to 1 means that there’s more chance that an
error at A will be masked, as it’s more frequently written than read.
Following the same logic, a safe ratio close to 0 means that an error
at A will be consumed, as it is more frequently read than written.
With this approach, we could clearly identify safe regions of memory
by computing the average safe ratio of the region’s memory address.

Armed with the memory access patterns and the location of mem-
ory failures, we could next characterize how these failures are affect-
ing data types and data structures in both precise and approximate
applications.

We intend to perform these experiments using gdb to inject errors.
We emulate single- and multi- bit soft errors. Since modern DRAM
can suffer from arbitrary bit flips [6], we simply replace randomly
picked bits with their complement. We record the location of the
injected fault, and the location at which the fault is exhibited, if any.
We proceed as follows:
1. We start the application in the error injection and monitoring

framework.
2. We inject errors and note their symbolic location.



3. We run the workload of interest — connecting clients to server
applications.

4. If the application crashes, we record the location of the crash, and
begin anew.

5. Otherwise, we compare the output of the computation with the
expected result and note it.

6. We begin anew, restarting the program and logging fault injection
locations, crash locations, and errors until the experiment is over.
We continue testing until a significant number of errors has oc-

curred in each of our regions of interest.

5. Plan

5.1. Steps

5.1.1. Milestone 1 - March 22, 2016 .
By the first milestone we should have found a set of programs that

provide us with a diverse range of applications, and that we should
be able to use to characterize the memory soft error recoverability of
each type of region according to data structures used, it’s location in
the program or program memory, and its access pattern.

We should be able to characterize specific regions in these pro-
grams, and should be able to provide a preliminary analysis of what
kinds of program, memory structures, and access patterns we will
look for with greater specificity.
5.1.2. Milestone 2 - April 12, 2016 .

By the second milestone we will have completely characterized
the regions of interest in each of our benchmark programs and will
have begun the experiments.

By this point we should have identified the areas in which we
expect to see the biggest differences, and have completed a small set
of pilot experiments that tell us which characteristics are likely to
give us significant results.

We should have also began to gather and analyze the data which
will form our main result.
5.1.3. Report - May 6, 2016 .

By the report, we will have finished the experiments, gathered and
analyzed the data, and have come to conclusions as to the differences
in soft error recoverability between regions due to their singled-out
characteristics.

If we have the time, we will also build tools to help statically
and dynamically identify these characteristics, so program memory
regions can be moved between heterogeneous blocks of physical
memory based on those characteristics.

5.2. Goals

5.2.1. Finished Product - May 6, 2016 .
We aim to characterize the memory error recoverability of regions

of a large set of test programs, based on data structures, data types,
location, and memory access patterns. We’ll have classified the
regions of interests, have performed experiments that map injected
hardware soft memory errors onto software recovery, application-
level error, or crash, and characterize each region.

If we have more time we want to proceed to build a tool to provide
annotations without programmer intervention, and possibly one to
dynamically move more recoverable structures to less reliable DRAM
and more fragile structures into a more expensive, more reliable
DRAM, say, with ECC.

5.2.2. Venue .
Completion of this project, including the more ambitious goals,

would result in a significant contribution that may be publishable at a
conference. We note that the central thrust of this project seems well-
adapted for submission to the Special Interest Group on Measurement
and Evaluation (SIGMETRICS), but also suitable for the Workshop
on Energy-Efficient Design (WEED), or, especially with extensions,
to the International Symposium on Computer Architecture (ISCA)
or Architectural Support for Programming Languages and Operating
Systems (ASPLOS) if we develop a tool.

References

[1] R. A. Ashraf et al., “Understanding the propagation of transient
errors in HPC applications,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis. ACM, 2015, p. 72. Available:
http://dl.acm.org/citation.cfm?id=2807670

[2] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An
Architectural Framework for Software Recovery of Hardware Faults,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp.
497–508. Available: http://doi.acm.org/10.1145/1815961.1816026

[3] X. Li and D. Yeung, “Application-Level Correctness and its Impact
on Fault Tolerance,” in IEEE 13th International Symposium on High
Performance Computer Architecture, 2007. HPCA 2007, Feb. 2007, pp.
181–192.

[4] S. Liu et al., “Flikker: Saving DRAM Refresh-power Through Critical
Data Partitioning,” in Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems, ser. ASPLOS XVI. New York, NY, USA: ACM, 2011,
pp. 213–224. Available: http://doi.acm.org/10.1145/1950365.1950391

[5] Y. Luo et al., “Characterizing Application Memory Error Vulnerability
to Optimize Datacenter Cost via Heterogeneous-Reliability Memory,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Jun. 2014, pp. 467–478.

[6] T. May and M. H. Woods, “Alpha-particle-induced soft errors in dy-
namic memories,” Electron Devices, IEEE Transactions on, vol. 26,
no. 1, pp. 2–9, Jan 1979.

[7] S. Nomura et al., “Sampling + DMR: Practical and Low-overhead
Permanent Fault Detection,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA
’11. New York, NY, USA: ACM, 2011, pp. 201–212. Available:
http://doi.acm.org/10.1145/2000064.2000089

[8] A. Sampson et al., “EnerJ: Approximate Data Types for Safe and
General Low-power Computation,” in Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp.
164–174. Available: http://doi.acm.org/10.1145/1993498.1993518

[9] H. Schirmeier et al., “Fail*: An open and versatile fault-injection frame-
work for the assessment of software-implemented hardware fault toler-
ance,” in Dependable Computing Conference (EDCC), 2015 Eleventh
European, Sept 2015, pp. 245–255.

[10] A. Sharma et al., “Towards analyzing and improving robustness of
software applications to intermittent and permanent faults in hardware,”
in Computer Design (ICCD), 2013 IEEE 31st International Conference
on, Oct 2013, pp. 435–438.

[11] L. Tan, Z. Chen, and S. L. Song, “Scalable Energy Efficiency
with Resilience for High Performance Computing Systems: A
Quantitative Methodology,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 12, no. 4, p. 35, 2015. Available:
http://dl.acm.org/citation.cfm?id=2822893

[12] L. Yu et al., “Quantitatively Modeling Application Resilience with
the Data Vulnerability Factor,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
695–706. Available: http://dx.doi.org/10.1109/SC.2014.62

2


